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A continuum model of the macroscopic behaviour of solids capable of undergoing
displacive phase transitions is applied to determine the response of such materials
to mechanical loading by impact. The solid is modelled using one-dimensional finite
thermoelasticity, and the model incorporates both a kinetic relation and a nucleation
criterion controlling the evolution and initiation of the phase transition, respectively.

1. Introduction

We make use of recently developed continuum models of phase transitions in solids
(Abeyaratne & Knowles 1993, 1994a, b) to study the dynamics of impact-generated
response in materials capable of undergoing such transitions. Such materials include
shape-memory alloys (CuAlNi, for example) and many ceramics (GeO2, SiO2). There
is a substantial literature on experiments in which a flyer plate or projectile strikes a
specimen and induces a phase change (see, for example, Jackson & Ahrens 1979; Tan
& Ahrens 1990; Escobar & Clifton 1993, 1995; Clifton 1993; Grady 1995). The analy-
sis presented here concerns a one-dimensional continuum composed of a thermoelastic
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844 R. Abeyaratne and J. K. Knowles

material whose bulk behaviour is governed by an explicit two-well Helmholtz free
energy potential that describes a material capable of existing in two distinct solid
phases. This potential is an adaptation to compression of one that was introduced in
Abeyaratne & Knowles (1993) for the purpose of modelling the behaviour of speci-
mens in which phase changes occur in tension. The thermomechanical setting in the
present study assumes that the relevant dynamical process takes place adiabatically,
as in the theory put forward in Abeyaratne & Knowles (1994). Moreover, the model
incorporates a kinetic relation controlling the rate at which the phase transition
proceeds as well as a nucleation criterion that determines when such a transition
is initiated. A different analysis, designed to model experimentally observed shock-
induced phase changes in materials of geological interest, is presented by Swegle
(1989). Studies of the dynamics of solid–solid phase transitions in a purely mechan-
ical framework that are similar in spirit to the present work, but without thermal
effects, have been carried out by Lin (1995) and Zhong (1995).

In the next section, we give the basic thermomechanical field equations and jump
conditions for a one-dimensional continuum, without yet specifying any constitutive
law. In §3, we describe the bulk constitutive law for one-dimensional nonlinear ther-
moelasticity theory in general, and we specify the particular two-phase ‘trilinear’
thermoelastic material, or ‘two-well potential’, that we shall employ. We also intro-
duce in §3 the kinetic relation and the nucleation criterion that comprise a part of
the model. The field equations and jump conditions are specialized to the trilinear
thermoelastic material in §4. Section 5 is devoted to the formulation of the impact
problem for a semi-infinite bar. In this problem, the bar is initially at a given temper-
ature and at rest in its reference state. At time t = 0, it is suddenly subjected at its
end to a prescribed constant particle velocity, which is maintained for all subsequent
time. We also describe in §5 the general structure to be expected of possible solutions
to the impact problem. Explicit solutions corresponding to the cases in which the bar
either changes phase under impact or fails to change phase are constructed in §6 for
a special case of the trilinear material in which the coefficent of thermal expansion α
common to both phases of the material vanishes. The discussion in this section illus-
trates the way in which the nucleation criterion selects between these two types of
solutions, and it also describes precisely how the kinetic relation picks out the proper
solution from among a one-parameter family of solutions that correspond to a phase
change. Section 6 also includes a comparison of the particle-velocity and density
time-histories for the solutions with and without a phase change, and a discussion of
the final temperature reached in the bar when the impact causes a phase transition.
In §7, we describe the modifications to the solutions of §6 that are necessary when
α does not vanish by describing the nature of the fields when a dimensionless version
of α – sometimes called the Grüneisen parameter – is small. These modifications are
mainly due to the presence of fans in the solutions, in addition to piecewise constant
states; the latter are are the only types of fields possible when α = 0.

2. Field equations and jump conditions

Consider a semi-infinite solid bar occupying the right half of the x-axis in the
reference configuration. We shall study one-dimensional longitudinal motions of the
bar in which a particle with Lagrangian coordinate x in the reference configuration
is carried at time t to the point x+ u(x, t), where u is the displacement. The strain
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Impact-induced phase transitions 845

γ(x, t) and the particle velocity v(x, t) at particle x at time t are defined by γ = ux,
v = ut, where the subscripts indicate partial derivatives. To assure that the mapping
x→ x+u(x, t) is one-to-one, so that neither interpenetration of material nor splitting
of a particle can occur, one must require that

γ(x, t) > −1 (2.1)

for all particles x and all times t during the motion. The nominal stress acting at
time t at the particle whose referential location is x is denoted by σ(x, t). The mass
density in the reference state is ρ0, which is taken to be independent of x. The
absolute temperature at time t of the particle x is denoted by θ(x, t), the Helmholtz
free energy per unit mass by ψ(x, t), and the entropy per unit mass by η(x, t).

It is assumed throughout that the displacement u(x, t) is a continuous function of x
and t, but the strain γ(x, t) and particle velocity v(x, t) are permitted to jump across
curves in the x, t-plane that correspond to moving strain discontinuities; as we shall
see, such discontinuities may be either shock waves or phase boundaries. Moreover,
because our thermodynamic framework will be adiabatic, we permit the temperature
θ(x, t) to jump across such curves as well. (If heat conduction were accounted for
as in Abeyaratne & Knowles (1994a), the temperature would be required to be
continuous.) At points of the bar away from discontinuities, the fields are assumed
to be smooth and to satisfy the differential equations,

σx = ρ0vt, (2.2)

vx = γt, (2.3)

ψt − σ

ρ0
γt + ηθt + θηt = 0. (2.4)

Equation (2.2) comes from balance of momentum, (2.3) from smoothness and conti-
nuity of displacement, and (2.4) represents the adiabatic version of energy balance,
i.e. the first law of thermodynamics, in terms of the Helmholtz free energy density.
The system (2.2)–(2.4) comprises the Lagrangian version of the field equations.

Where η is smooth, the second law of thermodynamics requires that

ηt > 0. (2.5)

At a moving strain discontinuity whose position in the reference configuration is
x = s(t) at time t, the balance principles and smoothness provide the following
(Lagrangian) jump conditions:

[[σ]] + ρ0ṡ[[v]] = 0, (2.6)

[[v]] + ṡ[[γ]] = 0, (2.7)

{[[ψ]] + 〈θ〉[[η]] + 〈η〉[[θ]]− 〈σ/ρ0〉[[γ]]}ṡ = 0; (2.8)
here we have written [[g]] ≡ g(s(t)+, t) − g(s(t)−, t) and 〈g〉 ≡ 1

2{g(s(t)+, t) +
g(s(t)−, t)} for the jump and the average, respectively, of any field quantity g(x, t)
across a moving discontinuity.

At a jump, the second law requires that the entropy per unit mass of a particle
cannot decrease as the particle crosses the discontinuity; thus

[[η]]ṡ 6 0. (2.9)

For our purposes, it is important to introduce the driving traction f acting on the
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strain discontinuity :

f = ρ0{[[ψ]]− 〈σ/ρ0〉[[γ]] + 〈η〉[[θ]]}; (2.10)

f is an ingredient in the kinetic relation to be discussed below. In terms of f , the
energy jump condition (2.8) can be rewritten as

{f + ρ0〈θ〉[[η]]}ṡ = 0. (2.11)

From (2.11), one has [[η]] = −f/(ρ0〈θ〉) when ṡ 6= 0, from which it follows that the
entropy inequality (2.9) is equivalent to

fṡ > 0. (2.12)

This representation of the second law at a moving strain discontinuity, though less
convenient for calculation in the adiabatic case than (2.9), is of precisely the same
form as that arising in the purely mechanical theory of the dynamics of phase tran-
sitions (Abeyaratne & Knowles 1991), as well as in the dynamics of thermoelastic
phase transitions with heat conduction (Abeyaratne & Knowles 1994a). The same
inequality plays a major role in the application of models of the kind considered
here to the description of quasi-static hysteresis in shape-memory materials (Abe-
yaratne & Knowles 1993; Abeyaratne et al. 1994). The physical significance of f in
the present adiabatic setting has been discussed in §6 of Abeyaratne & Knowles
(1994b); for further background concerning the notion of driving traction, see Abe-
yaratne & Knowles (1990).

3. A thermoelastic material

The bulk response of a thermoelastic material in the present one-dimensional con-
text is characterized by a Helmholtz free energy potential ψ̂(γ, θ), measured per unit
mass, such that

ψ(x, t) = ψ̂(γ(x, t), θ(x, t)). (3.1)
The nominal stress and the specific entropy are then determined by γ and θ according
to the thermoelastic constitutive law

σ = σ̂(γ, θ) ≡ ρ0ψ̂γ(γ, θ), η = η̂(γ, θ) ≡ −ψ̂θ(γ, θ), (3.2)

where the subscripts indicate partial derivatives. For such a material, the isothermal
elastic modulus µ(γ, θ), the coefficient of thermal expansion α(γ, θ) and the specific
heat at constant strain c(γ, θ) are defined by

µ(γ, θ) = σ̂γ(γ, θ) = ρ0ψ̂γγ(γ, θ),
α(γ, θ) = −σ̂θ(γ, θ)/σ̂γ(γ, θ) = −ψ̂γθ(γ, θ)/ψ̂γγ(γ, θ),

c(γ, θ) = θη̂θ(γ, θ) = −θψ̂θθ(γ, θ).

 (3.3)

For a thermoelastic material, the driving traction f of (2.10) can now be expressed
in terms of the potential ψ̂ through the following striking formula:

f = ρ0{[[ψ̂]]− 〈ψ̂γ〉[[γ]]− 〈ψ̂θ〉[[θ]]}. (3.4)

We now turn to the particular thermoelastic material to be used here. To describe
the Helmholtz free energy potential ψ̂ for this material, we first divide the γ, θ-plane
of figure 1 into four disjoint regions P, P1, P2, P3. The region P is the quarter-plane
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P

P1
P3

P2

–1 0γC γ

γ = γm(θ) = γC+m(θ – θC)

γ = γM(θ) = γC+M(θ – θC)

θ

θC

Figure 1. The strain–temperature plane.

γ > −1, θ > θC; the straight boundaries between P1 and P2 and between P2 and P3
are respectively given by

γ = γm(θ) ≡ γC +m(θ − θC), γ = γM (θ) ≡ γC +M(θ − θC), (3.5)

where γC, θC > 0, M and m are material constants. Since γm(θ) > γM (θ) for
0 < θ < θC, M and m must satisfy

M > m. (3.6)

Each of the four regions P, P1, P2, P3 is identified with a phase of the material.
Above the critical temperature θC, the material is in the same phase regardless of
the value of the strain γ. Below θ = θC, the material is said to be in the low-strain
phase – the phase with lesser compression – if (γ, θ) is in P1, in the high-strain phase
if (γ, θ) is in P3, and in the intermediate phase on P2. On the regions P1 and P3, the
Helmholtz free energy is given by

ψ̂(γ, θ) =


µ

2ρ0
γ2 − αµ

ρ0
γ(θ − θT)− cθ log

θ

θT
on P1,

µ

2ρ0
(γ + γT)2 − αµ

ρ0
(γ + γT)(θ − θT)− cθ log

θ

θT
+ λT

θ − θT

θT
on P3;

(3.7)
here µ > 0, α > 0 and c > 0 are constants. They represent respectively the values of
the isothermal elastic modulus, the coefficient of thermal expansion and the specific
heat at constant strain common to both the low-strain and high-strain phases of
the material. (Attributing different values of these parameters to the two phases
presents no difficulty of principle, but greatly complicates the detailed formulas.)
The remaining constants θT > 0, γT > 0 and λT are intimately connected with the
physics of the low-strain-to-high-strain phase transition, or the reverse transition;
their precise physical meanings will be described shortly.

Since we shall not be concerned with temperatures above θC, we do not discuss
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ψ(γ,θ)
^

ψ(γ,θ)
^

ψ(γ,θ)

γTγT
γT

^

–1 0–γT γ–1 0–γT γ–1 0–γT γ

(a) θ<θT (b) θ=θT (c) θ>θT

Figure 2. Helmholtz free energy potential as a function of strain at various temperatures near
θT.

the representation of ψ̂ on the half-plane P. It should be noted, however, that ∇ψ is
necessarily discontinuous at the point (γC, θC); it is expected that the present model
would not give physically meaningful predictions near this critical point, and we
accordingly assume in all that follows that the temperature remains well away from
θC.

It is also unnecessary for our purposes to display the explicit formula for ψ̂ on
the intermediate region P2; we note only that (i) on P2, ψ̂(γ, θ) is quadratic in γ
for each θ, with ψ̂γγ < 0, and (ii) ψ̂ and both of its first derivatives are continuous
on P1 + P2 + P3. The explicit formula for ψ̂ on P2 can be found by adapting its
counterpart in Abeyaratne & Knowles (1993) to the present circumstances.

At each temperature below θC, this Helmholtz free energy potential is a piecewise
quadratic function of strain that is convex on (−1, γM (θ)) and on (γm(θ),∞), but
concave on (γM (θ), γm(θ)). Moreover, for a certain range of θ that includes the special
temperature θ = θT, ψ̂ is a ‘two-well potential’. By this we mean that ψ̂ has three
local extrema as a function of strain at each fixed θ in this range: two of these are
local minima, one in the low-strain phase, one in the high-strain phase, while the
third is a local maximum in the intermediate phase; see figure 2. At each of these
extrema of ψ̂, (3.2)1 shows that the stress vanishes. At θ = θT, both minima carry the
same values of ψ̂, regardless of the value of λT. If λT > 0, the low-strain minimum is
lower than the high strain minimum when θ > θT, while the reverse is true if θ < θT.
On the other hand, if λT < 0, the relative heights of the two minima are reversed.
Thus when θ 6= θT, one minimum is energetically preferred over the other, and the
corresponding phase is viewed as energetically stable. At zero stress, both phases are
stable in this sense when θ = θT. We speak of θT as the transformation temperature
for the low-to-high strain phase transition, or for the reverse transition. At each θ,
the horizontal distance between the low- and high-strain minima is γT; we call γT
the transformation strain. The constant λT is the latent heat at the transformation
temperature for the low-strain to high-strain phase transition; it may have either
sign.

In addition to (3.6), there are further requirements on the material constants en-
tering (3.5) and (3.7); see Abeyaratne & Knowles (1993) and Abeyaratne & Knowles
(1994b). These restrictions are

γC = −γT

2
+
M +m

2
(θC−θT), M+m = 2α− 2ρ0λT

µγTθT
, γT > (M−m)θC. (3.8)

For this particular thermoelastic material, the constitutive statements in (3.2)
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σ(γ,θ)

µ

µ

1

1

–1
0 γ

γm(θ)

γ
T

γM(θ)

^

Figure 3. Isothermal stress-strain curve.

specialize as follows:

σ = σ̂(γ, θ) =

{
µγ − αµ(θ − θT) on P1,

µ(γ + γT)− αµ(θ − θT) on P3,
(3.9)

η = η̂(γ, θ) =


αµ

ρ0
γ + c

(
1 + log

θ

θT

)
on P1,

αµ

ρ0
(γ + γT) + c

(
1 + log

θ

θT

)
− λT

θT
on P3.

(3.10)

The relation (3.9) between stress, strain and temperature applies in all thermo-
mechanical processes for which θ < θC; if θ is constant, the associated isothermal
stress–strain curve is as shown in figure 3.

Stability considerations for nonlinear one-dimensional thermoelasticity in general
and for the intermediate phase of the trilinear material in particular are discussed in
Abeyaratne & Knowles (1994a, b).

The ultimate determination of the velocity of a phase boundary in a boundary-
initial value problem requires the imposition of a kinetic relation in addition to the
boundary- and initial data. For reasons discussed in Abeyaratne & Knowles (1994b),
we assume here that such a relation has the form

ṡ(t) = V (f(t)/〈θ(t)〉), (3.11)

where V is a function determined by the material, 〈θ(t)〉 is the average of the tem-
peratures

±
θ(t)

on either side of the phase boundary, and f(t) is the driving traction at the phase
boundary at time t. The entropy inequality in the form (2.12) makes it clear that
the ‘kinetic response function’ V of (3.11) must satisfy

V (z)z > 0 (3.12)
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for all relevant values of its argument z = f(t)/〈θ(t)〉. Although there are many
possible forms for V , for reasons of analytical convenience, we shall consider only the
simplest possibility: the propagation velocity ṡ is proportional to the driving traction
f , so that

V (z) = ωz, (3.13)
where the material constant ω > 0 is the mobility of the phase boundary. It may be
noted that the kinetic response function in (3.13) would represent the approximate
behaviour of any smooth kinetic relation for small driving traction.

In the impact problem to be discussed in the next section, the bar is assumed to
be initially at rest in the low-strain phase at a given temperature θ0. At time t = 0,
the particle at the end x = 0 of the bar is subject to a prescribed impact velocity
v0 > 0, which is maintained for all subsequent time. As we shall see, whether this
impact causes the bar to undergo a phase transition will depend on the magnitude of
v0. If a phase change is initiated, we assume that it will occur at the end of the bar,
thus originating at the particle whose referential location is x = 0. The criterion for
the nucleation of a low-strain-to-high-strain phase transition is assumed to be the
attainment of a critical value f∗ of driving traction f at an incipient phase boundary
emerging at x = 0; we take f∗ to be a materially determined constant.

4. Field equations and jump conditions for the trilinear
thermoelastic material

From (3.1), (3.2), one finds that (2.2)–(2.4) specialize as follows for a thermoelastic
material:

σ̂γ(γ, θ)γx + σ̂θ(γ, θ)θx = ρ0vt, (4.1)

vx = γt, (4.2)

∂η̂(γ, θ)/∂t = 0. (4.3)
In general, this is a quasi-linear system of three partial differential equations for the
strain γ, the temperature θ and the particle velocity v. Note that (4.3), which is the
local version of the first law, says that the specific entropy of a particle is constant
where it is smooth. It follows that the second law (2.5) is automatically satisfied
where η is smooth.

We now wish to specialize the system (4.1)–(4.3) to the trilinear material charac-
terized by (3.7). In doing so, we limit our attention to those processes in the bar for
which each particle is always either in the low-strain phase ((γ, θ) in P1) or in the
high-strain phase ((γ, θ) in P3), i.e. processes in which the intermediate phase ((γ, θ)
in P2) is always absent. Also, we consider only those processes for which θ(x, t) < θC
everywhere in space-time. With these restrictions, (3.9) and (3.10) reduce the system
(4.1)–(4.3) to

a2γx − αa2θx = vt, (4.4)

vx = γt, (4.5)

αa2γt + (c/θ)θt = 0, (4.6)
where

a = (µ/ρ0)1/2. (4.7)
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The differential equations (4.4)–(4.6) apply in both the high- and low-strain phases,
provided the fields are smooth.

Let x = s(t) be the location at time t of a strain discontinuity. In specializing the
basic jump conditions (2.6)–(2.8) to the trilinear thermoelastic material, one must
distinguish two cases: at a shock wave, the strains

±
γ = γ(s(t)±, t)

and temperatures
±
θ = θ(s(t)±, t)

on either side of the jump are such that

(
+
γ,

+
θ) and (γ, θ)

are both in the same phase (either P1 or P3); on the other hand, at a phase boundary,

(
+
γ,

+
θ) and (γ, θ)

are in different phases. We consider a shock wave first. From (3.7), (3.9), (3.10), one
finds that (2.6)–(2.8) take the respective forms

a2[[γ]]− αa2[[θ]] + ṡ[[v]] = 0,
[[v]] + ṡ[[γ]] = 0,

{[[θ]] + (αa2/c)〈θ〉[[γ]]}ṡ = 0,

 at a shock wave, (4.8)

in either the low-strain or the high-strain phase. From (3.10), the entropy inequality
(2.9) is found to be

{αa2[[γ]] + c log(
+
θ/θ)}ṡ 6 0 at a shock wave. (4.9)

If (4.8) is considered as a homogeneous linear system for [[γ]], [[θ]] and [[v]], and
if not all of these jumps vanish, then the determinant of the system must be zero,
and the shock wave velocity ṡ must satisfy

ṡ

{
ṡ2 − a2

(
1 +

α2a2

c
〈θ〉
)}

= 0. (4.10)

One root of (4.10) is ṡ = 0, corresponding to a shock wave that is stationary in
the Lagrangian sense. The Eulerian image of this discontinuity is of course moving,
but it always consists of the same material particles; it is thus the counterpart of a
contact discontinuity in gas dynamics. Contact discontinuities occur in the Riemann
problem analysed in Abeyaratne & Knowles (1994b), but they do not arise in the
impact problem considered here. The remaining two roots of (4.10) correspond to
the Lagrangian velocity of genuine shock waves, expressed in terms of the average
〈θ〉 of the temperatures on either side of the shock:

ṡ = ±a
(

1 +
α2a2

c
〈θ〉
)1/2

. (4.11)

Next, suppose that the strain discontinuity is a phase boundary; for our purposes,
phase boundaries of interest will always have the high-strain phase on the left, the
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low-strain phase on the right. Using (3.7), (3.9) and (3.10) in (2.6)–(2.8) gives the
jump conditions at a phase boundary in a trilinear thermoelastic material:

a2([[γ]]− γT)− αa2[[θ]] + ṡ[[v]] = 0,
[[v]] + ṡ[[γ]] = 0,

{−γTa
2(〈γ〉+ γT/2) + αa2〈θ〉[[γ]]

+c[[θ]] + λT − αa2γTθT}ṡ = 0,

 at a phase boundary. (4.12)

The entropy inequality (2.9) becomes

{αa2[[γ]] + c log(
+
θ/θ)− αa2γT + λT/θT}ṡ 6 0 at a phase boundary. (4.13)

It may be noted that if one formally sets the transformation strain γT and the
latent heat λT equal to zero, the jump conditions (4.12) and the entropy inequality
(4.13) for a phase boundary reduce formally to their respective counterparts (4.8)
and (4.9) for shock waves.

For the trilinear material, the driving traction at a phase boundary with the high-
strain phase on the left can be calculated from (3.2), (3.9), (3.10) and (2.10); after
simplifying the result with the help of the energy jump condition (4.12)3, one finds

f = ρ0〈θ〉{αa2(γT − [[γ]])− c log(
+
θ/θ)− λT/θT}. (4.14)

5. The impact problem

We seek a piecewise smooth solution γ(x, t), v(x, t), θ(x, t) of the field equations
(4.1)–(4.3) in the first quadrant of the x, t-plane for the particular thermoelastic
material governed by the potential (3.7) subject to the following initial and boundary
conditions:

γ(x, 0) = v(x, 0) = 0, θ(x, 0) = θ0 for x > 0, (5.1)

v(0, t) = v0 for t > 0, (5.2)
where θ0 > 0 and v0 are given constants. Although v0 may have either sign, the case
v0 > 0 corresponding to impact will be of principal interest. The initial temperature
θ0 is assumed less than θC, and the point in the γ, θ-plane with coordinates (0, θ0),
corresponding to the state of the bar before impact, is assumed to be in the region
P1 corresponding to the low-strain phase.

In a purely mechanical theory that ignores thermal effects, as in Abeyaratne &
Knowles (1991), or when such effects are accounted for along with heat conduction,
as in Abeyaratne & Knowles (1994a), one can prove that the intermediate phase
corresponding to the region P2, if absent initially, is always absent, at least in certain
initial value problems. In the present adiabatic framework, we have been unable to
establish analogous results, so we legislate the absence of the intermediate phase a
priori: attention is limited to processes for which, at each instant, a given particle
is either in the low-strain phase ((γ(x, t), θ(x, t)) in P1) or in the high-strain phase
((γ(x, t), θ(x, t)) in P3). It is also assumed that θ(x, t) < θC everywhere in space-time.
Thus (3.7), (3.9) and (3.10) apply, and the field equations (4.1)–(4.3) specialize to
(4.4)–(4.6) wherever the fields are smooth.

It is also necessary that, at any shock wave or phase boundary arising in a solution
of (4.4)–(4.6), the jump conditions (4.8) or (4.12) hold, respectively, and that the en-
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tropy inequalities (4.9) and (4.13) are satisfied at shock waves and phase boundaries,
respectively.

The boundary-initial value problem is invariant under the scale change x → kx,
t→ kt for any constant k, suggesting that we seek solutions with this same invariance.
This leads to the ansatz that γ = γ(x/t), v = v(x/t), θ = θ(x/t) where the fields
are smooth. With this ansatz in force, the differential equations (4.4)–(4.6) reduce
to a set of homogeneous linear algebraic equations for γ′(ξ), v′(ξ) and θ′(ξ), where
ξ = x/t:

a2γ′(ξ)− αa2θ′(ξ) + ξv′(ξ) = 0,
ξγ′(ξ) + v′(ξ) = 0,

αa2γ′(ξ) + cθ′(ξ)/θ(ξ) = 0.

 (5.3)

To understand the implications of (5.3), it is helpful to distinguish two cases.

Case 1. The coefficient of thermal expansion vanishes: α = 0. In this case, the
determinant of the system (5.3) vanishes if and only if ξ ≡ x/t = ±a. Moreover,
according to (4.11), a is the speed of shock waves when α = 0. Thus where the fields
are smooth, γ, θ and v must be constant in this case. In Case 1, we therefore seek
piecewise constant solutions of the impact problem.

Case 2. The coefficient of thermal expansion does not vanish: α > 0. In this case,
the determinant of the system (5.3) vanishes if and only if

θ(ξ) =
c

α2a4 (ξ2 − a2); (5.4)

since θ > 0, necessarily ξ ≡ x/t > a in Case 2. Any connected subregion of the first
quadrant of the x, t-plane in which (5.4) holds must be a sector ξ1 < x/t < ξ2 with
vertex at the origin, and, by (5.3), γ(ξ) and v(ξ) must take the following forms in
such a sector:

γ(ξ) = − c

αa2 log(ξ2 − a2) +A, v(ξ) =
2c
αa2

{
ξ +

a

2
log
(
ξ − a
ξ + a

)}
+B, (5.5)

where A and B are arbitrary constants. In any region of the x, t-plane where the fields
are smooth and (5.4) fails to hold, γ, v and θ must be constant. Thus in Case 2, we
seek solutions of the impact problem in which, in every sector ξ1 < x/t < ξ2 of the
first quadrant of the x, t-plane in which the fields are smooth, γ, v and θ are either
constant or given by the fan (5.4), (5.5).

In the next section, we consider Case 1 in detail. Although α = 0 is not a realistic
case physically, it describes the main qualitative features of the impact problem for
the trilinear thermoelastic material. In §7, we address briefly the modifications of
the results of §6 necessitated by non-zero values of α by describing approximations
appropriate for small values of the Grüneisen parameter ε, which in the present
circumstances is defined by

ε = αa2/c = ψ̂γθ/(θψ̂θθ). (5.6)

As defined in (5.6), ε corresponds to the modified Grüneisen parameter employed
by Clifton in eqn (20) of Clifton (1993). In a general thermoelastic material, ε will
depend on the strain and the temperature; for the trilinear special case considered
here, ε is a constant. Values of ε near 1 are consistent with some experiments on
certain ceramics (see Tan & Ahrens 1990).
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6. Solutions of the impact problem when α = 0

(a ) Construction of solutions
In this section, we consider the special case α = 0. The differential equations

(4.4)–(4.6) then simplify to

a2γx = vt, vx = γt, (6.1)

θt = 0. (6.2)
Thus mechanical and thermal effects are uncoupled in the differential equations, and
the mechanical equations (6.1) are equivalent to the scalar wave equation with wave
speed a = (µ/ρ0)1/2. At a shock wave, the jump conditions (4.8) and the entropy
inequality (4.9) with α = 0 become

a2[[γ]] + ṡ[[v]] = 0
[[v]] + ṡ[[γ]] = 0

[[θ]]ṡ = 0

 (shock wave, α = 0), (6.3)

{log(
+
θ/θ)}ṡ 6 0 (shock wave, α = 0), (6.4)

respectively. From (6.3)1,2, one finds that a shock wave travels with speed ṡ = a, so
that from (6.3)3, the temperature remains continuous across a shock wave, and the
entropy inequality (6.4) is trivially satisfied.

At a phase boundary, the jump conditions (4.12) and the entropy inequality (4.13)
reduce when α = 0 to

a2[[γ]] + ṡ[[v]]− γTa
2 = 0

[[v]] + ṡ[[γ]] = 0
{c[[θ]]− γTa

2[〈γ〉+ γT/2] + λT}ṡ = 0

 (phase boundary, α = 0), (6.5)

and

{(λT/θT) + c log(
+
θ/θ)}ṡ 6 0 (phase boundary, α = 0), (6.6)

respectively.
If the impact fails to cause a phase change, we expect that the only propagating

discontinuity will be a shock wave at x = at, the temperature remaining continuous
everywhere. Recalling that scale-invariant solutions are piecewise constant when α =
0, we conclude from (6.1), (6.2), (5.1), (5.2) and (6.3) that the appropriate solution
in the absence of a phase transition is given by

γ, v, θ =

{
−v0/a, v0, θ0 for 0 6 x < at,

0, 0, θ0 for x > at;
(6.7)

this solution is described graphically in the x, t-plane in figure 4a.
On the other hand, if there is a phase change, the appropriate solution will involve

at propagating phase boundary. If the phase boundary were the front-running dis-
turbance in this solution, then (6.5)1,2 would show that ṡ < a, so there would be no
shock wave. Using the jump conditions, boundary conditions and initial conditions,
one can then show that there is no solution involving a front-running phase boundary
that satisfies the impact condition v(0, t) = v0. Hence the phase boundary must be
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Figure 4. The x, t-plane for the impact problem in the cas α = 0: (a) without phase transition;
(b) with phase transition.

preceded by a shock wave, so that 0 < ṡ < a, suggesting a solution of the following
form when a phase change occurs:

γ, v, θ =


γ, v0, θ for 0 6 x < ṡt,
+
γ,

+
v, θ0 for ṡt < x < at,

0, 0, θ0 for x > at;

(6.8)

see figure 4b. Here ṡ is the as yet undetermined constant phase boundary velocity,

and
±
γ, θ,

+
v are unknown constants. On enforcing the jump conditions (6.3) at the

shock wave x = at and (6.5) at the phase boundary x = ṡt, one finds after some
algebra that

γ = −v0

a
− γT

a

a+ ṡ
, (6.9)

θ = θ0 +
λT

c
+
aγT

c
v0 +

a2γ2
T

2c
ṡ2 − 2aṡ
a2 − ṡ2 , (6.10)

+
γ = −v0

a
+ γT

aṡ

a2 − ṡ2 , (6.11)

+
v = v0 − γT

a2ṡ

a2 − ṡ2 ; (6.12)

equations (6.9)–(6.12) determine all unknowns in terms of ṡ. Further, the entropy
inequality (6.6) now requires that

λT

cθT
− log

{
1 +

λT

cθ0
+
a2γT

2cθ0

[
2
v0

a
+ γT

ṡ2 − 2aṡ
a2 − ṡ2

]}
6 0. (6.13)

(b ) Entropy and phase segregation inequalities
In order that either the no-phase-change solution (6.7) or the phase-change solution

(6.8)–(6.12) be valid, each strain–temperature pair arising in these solutions must
correspond to a point in the appropriate region Pi of the γ, θ-plane that corresponds

Phil. Trans. R. Soc. Lond. A (1997)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


856 R. Abeyaratne and J. K. Knowles

R

no-phase-change
solution

f = 0

0
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–

γ = –1–

.

υ0/(aγT)

Figure 5. Region R in the ṡ/a, v0/(aγT)-plane permitted by phase segregation and entropy
inequalities: λT = 0, α = 0.

to the underlying phase. In particular, since the bar is assumed to be in the low-
strain phase initially, the point (0, θ0) must lie in the low-strain region P1, so that
the initial datum θ0 must be such that γm(θ0) < 0. Next, considering the no-phase-
change solution, we observe that the point (−v0/a, θ0) must lie in the region P1,
since the material behind the shock wave remains in the low-strain phase. Thus for
a given initial temperature θ0 satisfying γm(θ0) < 0, the impact velocity v0 must be
small enough to assure that v0/a < −γm(θ0).

In the phase-change solution (6.8)–(6.12), the data θ0, v0 and the phase bound-
ary velocity ṡ must be such that, in addition to the entropy inequality (6.13), the
restrictions

γ > −1, γ < γM (θ),
+
γ > γm(θ0), θ < θC

must also hold. Regarding the initial temperature θ0 as given, fixed and satisfy-
ing γm(θ0) < 0, these inequalities may be conveniently described in the plane in
which the dimensionless velocities ṡ/a and v0/(aγT) are the Cartesian coordinates.
Each of the five inequalities cited above corresponds to a requirement that the point
(ṡ/a, v0/(aγT)) be either below or above a certain curve in this plane. To illustrate
the nature of these curves and the associated region in the ṡ/a, v0/(aγT)-plane per-
mitted by the five inequalities, we refer to figure 5. For definiteness, this figure is
drawn for the special case of zero latent heat: λT = 0; this case arises physically
when the two ‘phases’ of the material are actually variants of a single phase, as in
the twinning of crystals. In this special case, all of the restrictions on θ0, v0 and ṡ
cited above may be expressed in a form that involves only the dimensionless mate-
rial constants N = Ma2γT/c, TC = cθC/(a2γ2

T) and γT as well as the dimensionless
initial temperature T0 = cθ0/(a2γ2

T). Figure 5 corresponds to the choice N = 0.1,
TC = 1.25, γT = 0.5, T0 = 0.1; these values of the dimensionless parameters are
chosen for reasons of graphical clarity and do not necessarily correspond to the char-
acteristics of any specific real material. The shaded region R in the figure represents
the set of all permissible pairs ṡ, v0 for which the solution (6.8)–(6.12) involving a
phase change is valid.
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The portion of the vertical axis shown bold in figure 5 corresponds to the inequality
v0/a < −γm(θ0), i.e. to the set of values of the impact velocity v0 for which, at the
given initial temperature θ0, the solution (6.7) without a phase change holds.

The phase-change solution (6.8)–(6.12) satisfies all jump conditions, differential
equations, boundary and initial conditions, regardless of the value of ṡ, subject only
to the requirement 0 < ṡ < a, the entropy inequality (6.13) and the phase segregation
inequalities cited above and exemplified in figure 5. Thus further information is
required to determine ṡ, once it has been ascertained that the phase-change solution,
and not the no-phase-change solution (6.7), is appropriate. This determination of ṡ
is accomplished with the help of a kinetic relation; the question of which of the
solutions (6.7) or (6.8)–(6.12) is the proper one is then addressed by appealing to a
nucleation criterion.

(c ) Kinetics and nucleation
According to (3.11), (3.13), the kinetic relation to be used here to describe the

evolution of the phase transition is

ṡ = ωf/〈θ〉, (6.14)

where f is the driving traction at the phase boundary. By using (4.14) and (6.8)–
(6.11), one finds that (6.14) takes the form

ṡ = −ωρ0λT

θT
+ ωρ0c log

(
1 +

λT

cθ0
+
aγT

cθ0
v0 +

a2γ2
T

2cθ0

ṡ2 − 2aṡ
a2 − ṡ2

)
. (6.15)

This relation between the impact velocity and the phase boundary velocity can be
represented by a curve in the ṡ/a, v0/(aγT)-plane. For the special case λT = 0 of zero
latent heat, this ‘kinetic curve’ K is shown in relation to the region R permitted by
the entropy and phase segregation inequalities in figure 6. The figure is drawn for the
same values of the dimensionless parameters N , γT, TC and T0 underlying figure 5;
in addition the dimensionless mobility Ω = ωcρ0/a has been given the value 0.4.
For any given positive values of the impact velocity v0 and the initial temperature,
(6.15) determines a unique value of ṡ between zero and a, as is clear from figure 6,
at least in the special case described by the figure. We write

ṡ/a = ϕ(v0, θ0) (6.16)

for the dimensionless value of the phase boundary velocity determined in this way. If
the corresponding point (ṡ/a, v0/(aγT)) ∈ K lies in the shaded admissible region R,
then it singles out the unique phase-change solution (6.8)–(6.12) conforming to the
kinetic relation. It should be noted that, for sufficiently large values of the impact
velocity v0, the kinetic curve leads to solutions (6.8) that violate the requirement
γ > −1 and hence are unacceptable.

From figure 6, it is clear that if the impact velocity v0 is negative (causing tension
rather than compression), no phase change can occur according to the present ma-
terial model. On the other hand, if v0 is positive and large enough, a phase change
must occur. For an intermediate range of positive values of v0, the bar may or may
not undergo a phase change; see figure 6. To determine which alternative occurs for
impact velocities in this intermediate range, we impose the nucleation criterion. This
criterion asserts that the particle at the point of impact will change phase, causing
a phase boundary to emerge at x = 0 and move into the bar, if the driving traction
f caused by doing so is at least as great as a certain critical value f∗; we take f∗
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Figure 6. The kinetic curve K in the region R: λT = 0, α = 0.

to be a material constant. From (4.14) and (6.8)–(6.11), one finds that the driving
traction f is given by

f = cρ0θ0[−λT/(cθT) + log(1 +Q)](1 + 1
2Q), (6.17)

where

Q = Q(ṡ, v0) ≡ λT

cθ0
+
aγT

cθ0
v0 +

a2γ2
T

2cθ0

ṡ2 − 2aṡ
a2 − ṡ2 . (6.18)

If F∗ = f∗/(cρ0θC), the nucleation criterion requires that

(1 +Q/2)[−λT/(cθT) + log(1 +Q)] > F∗θC/θ0. (6.19)

For a given initial temperature θ0, the nucleation inequality (6.19) will hold only on a
subregion of the region R in the ṡ/a, v0/(aγT)-plane. Only those two-phase solutions
corresponding to points in this subregion are then available, and therefore only that
portion Knuc of the kinetic curve K that lies in this subregion is relevant. For the
special case λT = 0, Knuc is shown bold in figure 7. The figure is drawn for the
same values of the dimensionless parameters used for figures 5 and 6; in addition,
the special value F∗ = 0.8 of the dimensionless critical driving traction was assumed.
If the imposed particle velocity v0 exceeds the critical value v∗(θ0) defined in figure 7,
then the phase-change solution is the appropriate one, and the value ṡ of the phase
boundary velocity is that determined by the kinetic curve for the given v0. For values
of v0 less than v∗(θ0), the bar does not undergo a phase change, and the solution
(6.7) applies.

(d ) Results
Here we describe some features of the two types of solution constructed above; we

assume that the impact velocity is positive, corresponding to compression.
In typical flyer-plate or projectile-impact experiments, the specimen is a plate

subjected to impact on one face, and the particle velocity time-history is measured
at a point on the opposite face. In such experiments, there are of course repeated
wave reflections from the faces and the lateral surface of the specimen. Reflections are
absent in the present analysis, because we have chosen the bar to be semi-infinite. It
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Figure 7. Effect of nucleation criterion and kinetic relation on the selection of solution: λT = 0,
α = 0.
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Figure 8. Schematic plot of the velocity time-history of a particle in the case α = 0: (a)
without phase change; (b) with phase change.

is nevertheless of interest to compare the time-histories of particle velocity v(x, t) at
a fixed particle in the no-phase-change solution (6.7) and in the solution (6.8)–(6.12)
with a phase change. By (6.7), in the absence of a phase transition,

v(x, t) =

{
0, t < x/a,

v0, t > x/a;
(6.20)

the corresponding graph is shown in figure 8a. When a phase change does occur,
(6.8) and (6.12) give

v(x, t) =


0 for t < x/a,

v0 − aγT
ṡ/a

1− (ṡ/a)2 for x/a < t < x/ṡ,

v0 for t > x/ṡ.

(6.21)

The phase boundary velocity ṡ entering (6.21) is determined in terms of the im-
pact velocity v0 and the initial temperature θ0 by the kinetic relation (6.15): ṡ/a =
ϕ(v0, θ0). The value of ṡ returned by this calculation is necessarily between zero and
a, so that we may schematically describe the time history of v(x, t) when a phase
change takes place as in figure 8b. Observe that the first discontinuity in v always
leads to a particle velocity less than the final velocity v0, which is achieved after the
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Figure 9. Schematic plot of the density time-history of a particle in the case α = 0: (a) without
phase change; (b) with phase change.

passage of the phase boundary. The disparity between the intermediate and final
values of particle velocity increases with the transformation strain γT and with the
phase boundary velocity ṡ. Indeed, if the transformation strain is sufficiently large or
the phase boundary travels fast enough, the intermediate and final particle velocities
may have opposite signs.

If the deformation of the one-dimensional continuum under consideration is viewed
as uniaxial, mass balance requires that the initial density ρ0 and the current density
ρ(x, t) at time t at the particle whose reference location is x are related by

ρ(x, t) =
ρ0

1 + γ(x, t)
, (6.22)

where γ(x, t) is the strain at this particle at time t. Using either (6.7) or (6.8), (6.9)
and (6.11), we can describe the time-history of density at a given particle. When
there is no phase change,

ρ(x, t)/ρ0 =


1 for t < x/a,

1
1− v0/a

for t > x/a;
(6.23)

this no-phase-change density ratio is shown schematically in figure 9a.
When there is a phase change, (6.23) is replaced by

ρ(x, t)/ρ0 =



1 for t < x/a,

1
1− v0/a+ γT(ṡ/a)/[1− (ṡ2/a2)]

for x/a < t < x/ṡ,

1
1− v0/a− γT/(1 + ṡ/a)

for t > x/ṡ;

(6.24)

the schematic graph associated with (6.24) is shown in figure 9b.
When the bar undergoes a phase transition, (6.24) shows that – according to the

present model – the final density ρ∞ is given as a function of impact velocity and
initial temperature by

ρ∞ = ρ∞(v0, θ0) =
ρ0

1− v0/a− γT/[1 + ϕ(v0, θ0)]
, (6.25)

where ṡ/a = ϕ(v0, θ0) is the value of the dimensionless phase boundary velocity
determined by the kinetic relation (6.15). Since ϕ(v0, θ0) > 0, it follows from (6.24)
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Figure 10. Ratio of final to initial density after a phase change as a funtion of impact velocity
at various initial temperatures: λT = 0, α = 0.

and (6.23) that the final density in the presence of a phase transition always exceeds
the final density when no transition occurs. Moreover, referring to figure 7, we observe
that, as the point X of intersection between the kinetic curve and the curve γ = −1
is approached from below, the strain behind the phase boundary tends to −1, so
that by (6.22), the final density tends to infinity in this limit. This will occur at a
limiting value of the impact velocity v0 that depends on the initial temperature, and
of course on the material parameters as well.

From (6.24) and (6.15), one sees that, in addition to the impact velocity and initial
temperature, the final density also depends parametrically on the shock wave speed
a = (µ/ρ0)1/2, the transformation strain γT, the latent heat λT, the specific heat
at constant strain c, the reference density ρ0 and the phase boundary mobility ω.
When the latent heat λT vanishes, it can be shown that ρ∞/ρ0 depends only on
the dimensionless initial temperature T0 = cθ0/(a2γ2

T), the dimensionless impact
velocity v0/(aγT) and the dimensionless mobility Ω = ωcρ0/a. In figure 10, the ratio
ρ∞/ρ0 of final to initial densities for the impact-induced phase transition is plotted
in the case λT = 0 as a function of dimensionless impact velocity v0/(aγT) for
various dimensionless initial temperatures T0, a fixed value Ω = 0.4 being assumed
for the dimensionless mobility. The figure does not reflect the effect of nucleation:
only that portion of each curve lying to the right of the critical impact velocity v∗(θ0)
is relevant. Observe that the largest and smallest values of T0 involved in figure 10
differ by two orders of magnitude, suggesting that the final density during the phase
change is rather insensitive to the initial temperature, at least at this mobility and
when the coefficient of thermal expansion α = 0.

It is an artifact of the present case α = 0 that the temperature does not jump
across a shock wave, so that – as in (6.7) – the final temperature and the initial
temperature coincide when the impact fails to cause a phase transition. When there
is a phase change, (6.10) and the kinetic relation in the form ṡ/a = ϕ(v0, θ0) as in
(6.16) provide the final temperature θ∞ = θ in terms of the impact velocity v0 and
the initial temperature θ0 and, of course, material constants. In the special case of
zero latent heat, we plot in figure 11 the ratio θ∞/θ0 as a function of the dimensionless
impact velocity v0/(aγT) at various values of the dimensionless initial temperature
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Figure 11. Ratio of final to initial temperature after a phase change as a funtion of impact
velocity at various initial temperatures: λT = 0, α = 0.

T0; the effect of nucleation is not shown in the figure. Observe that, at a given impact
velocity in this model, θ∞/θ0 decreases as T0 increases.

7. Solutions of the impact problem when α 6= 0

According to the discussion in §5, when the coefficient of thermal expansion α
does not vanish, scale-invariant solutions of the impact problem may involve fans of
the form (5.4), (5.5) as well as constant states. In the present section, we describe the
qualitative structure of such solutions when α 6= 0, and we give quantitative approx-
imations for some of the resulting fields when the Grüneisen parameter ε = αa2/c is
small. It is convenient for these purposes to introduce a dimensionless temperature
T and a dimensionless particle velocity w by setting

T = cθ/(a2γ2
T), w = v/(aγT); (7.1)

see the discussion between (6.13) and (6.14), where these same non-dimensional ver-
sions of temperature and particle velocity were also used. The dimensionless versions
of the initial temperature θ0, the transformation temperature θT and the impact
velocity v0 are denoted by T0, TT and w0, respectively.

As in the case α = 0, there are two fundamental types of solutions: one in which
the bar does not undergo a phase transition, and the other in which it does. We
discuss the form of the no-phase-change solutions first.

(a ) Solutions without a phase-change
We begin by asking whether there are solutions which involve a shock wave, but no

fans and no phase boundary, corresponding to the structure indicated in figure 12a.
For a solution of this form, the jump conditions (4.8) appropriate to a shock wave
show that the strain γ and dimensionless temperature T behind the shock are given
in terms of the dimensionless shock wave velocity ξ1 = ṡ1/a by

γ = −γTw0/ξ1, T = T0
1 + εγTw0/(2ξ1)
1− εγTw0/(2ξ1)

, (7.2)
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υ = υ0,

θ = θ

–

–

γ = γ,
υ = υ0,

θ = θ

–

–

γ = 0,
υ = 0,

θ = θ0

γ = 0,
υ = 0,

θ = θ0

x = s1t
. x = s2t

.

x = s1t
.

(shock

wave)
fan

Figure 12. The x, t-plane for the impact problem in the case α 6= 0 without a phase transition:
(a) with shock wave; (b) with fan.

and that ξ1 satisfies

ξ2
1 = 1 +

ε2γ2
TT0

1− εγTw0/(2ξ1)
. (7.3)

For small ε, (7.3) and (7.2) give

ξ1 = 1 + γ2
TT0ε

2/2 +O(ε3),
γ = −γTw0 + w0T0γ

3
Tε

2/2 +O(ε3),
T = T0 + γTw0T0ε+O(ε2).

 (7.4)

The entropy inequality (4.9) at a shock wave can be shown to require that 0 6
γTw0/ξ1 6 2/ε; in particular, no entropically admissible solution without a phase
change and without a fan exists unless the impact velocity v0 is positive, correspond-
ing to compression of the bar. When v0 is positive, (7.2)2 shows that the temperature
increases behind the shock wave.

Next, we consider the possibility that a no-phase-change solution involves a fan,
but no shock wave; thus we seek solutions of the form indicated in figure 12b, where,
within the fan, the temperature, strain and particle velocity have the forms given
in (5.4), (5.5). Enforcing continuity of strain and particle velocity at the fan bound-
aries determines the constants A and B in (5.5) as well as the velocities ṡ1 and ṡ2
that define the boundaries of the fan. This calculation yields the following small-ε
approximations for the dimensionless versions ξ1 = ṡ1/a and ξ2 = ṡ2/a of these
velocities:

ξ1 = 1 + 1
2T0γ

2
Tε

2 +O(ε4), ξ2 = 1 + 1
2T0γ

2
Tε

2 + 1
2T0w0γ

3
Tε

3 +O(ε4). (7.5)

Since necessarily ξ2 < ξ1, one must have w0 < 0. Therefore, at least for small ε,
the no-phase-change solution with a fan can only occur when the impact velocity is
negative, corresponding to tensile loading. Thus in the absence of a phase transition,
as in gas dynamics, compression induces a shock, while ‘rarefaction’ is described by
continuous strain and temperature fields involving a fan. The ultimate strain and
dimensionless temperature behind the fan are found to be given by

γ = −γTw0 + w0T0γ
3
Tε

2/2 +O(ε3), T = T0 + T0w0γTε+O(ε2). (7.6)

for small ε. Comparison of (7.4)2,3 and (7.6) shows that, to the first two orders in ε,
the ultimate strain and temperature in the bar are related to the impact velocity and
the initial temperature in the same way in the two types of solution that correspond
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t
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υ = υ0,
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γ = 0, υ = 0, θ = θ0
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υ = υ0,

θ = θ
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–
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+
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+
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+

+
+
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.

x = s1t
.

x = st (phase boundary). x = st (phase boundary).

fan

Figure 13. The x, t-plane for the impact problem in the case α 6= 0 with a phase transition: (a)
with shock wave; (b) with fan.

to the absence of a phase transition. A similar remark applies to the dimensionless
velocities ξ1 in (7.4)1 and ξ1, ξ2 in (7.5).

(b ) Solutions with a phase-change
When a phase transition does occur, there are again two types of solution: one

with a phase boundary, a shock wave and no fan, another with a phase boundary, a
fan and no shock wave; see figure 13.

We first discuss the former case, in which the solution involves a phase boundary
and a shock wave, but no fan, as indicated in figure 13a. Enforcing the jump con-
ditions at the phase boundary x = ṡt and at the shock wave x = ṡ1t provides six
equations for the determination of the six unknowns

±
γ,

+
v,

±
θ, ṡ1

as functions of the phase boundary velocity ṡ, which in turn must ultimately be
determined by the kinetic relation. While these equations cannot be solved explicitly
in closed form, they readily provide approximations for the various fields when ε is
small. To describe some of these approximations, it is helpful to rewrite (3.8)2 in the
form

λT =
◦
λT + a2TTγ

3
Tε, (7.7)

where
◦
λT is the latent heat when α = 0.

For small ε, the principal differences between the present phase-change solution
(figure 13a) and the phase-change solution when α = 0 (figure 4b) is that the entropy
inequality at the shock wave is no longer trivial. To leading order in ε, the unknowns

±
γ, θ,

+
v

of figure 13a are again given by (6.9)–(6.12), while

+
θ = θ0 +O(ε).

When evaluated to the first non-trivial order in ε, the entropy inequality at the shock
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wave is found to require that

w0 >
ξ

1− ξ2 , 0 6 ξ < 1 (phase change with shock wave, no fan). (7.8)

Because of (7.8), one finds from (6.11) that the strain immediately behind the shock
wave is compressive. When the dimensionless version of

+
θ is calculated to the next

order in ε, it is found to be given by

+
T = T0 + εγTT0

(
w0 − ξ

1− ξ2

)
+O(ε2), 0 6 ξ < 1, (7.9)

so that, by (7.8), (7.9), the temperature is slightly increased by the passage of the
shock.

We next turn to the case of a phase-change solution involving a fan and a phase
boundary, but no shock wave, as indicated in figure 13b. Within the fan, the fields
are of the form (5.4), (5.5). Enforcing the jump conditions at the phase boundary
x = ṡt and continuity of the fields at the boundaries x = ṡ1t and x = ṡ2t of the fan
provides nine equations for the determination of the nine unknowns

±
γ,

±
θ,

+
v, ṡ1, ṡ2

and the constants A and B in (5.5) as functions of the phase boundary velocity
ṡ. While these equations too cannot be solved explicitly in closed form, they also
readily provide approximations for the various fields when ε is small.

For small ε, the principal difference between the present phase-change solution (fig-
ure 13b) and the phase-change solution when α = 0 (figure 4b) is that the shock wave
in the latter is now replaced by a narrow fan. To leading order in ε, the unknowns

±
γ, θ,

+
v

in figure 13b are given by the formulas (6.9)–(6.12), while

θ = θ0 +O(ε).

The dimensionless velocities ξ1 = ṡ1/a and ξ2 = ṡ2/a corresponding to the bound-
aries of the fan are given in terms of the dimensionless phase boundary velocity
ξ = ṡ/a by

ξ1 = 1 + γ2
TT0ε

2/2 +O(ε4), ξ2 = 1 + γ2
TT0ε

2/2 + γ3
TT0

(
w0 − ξ

1− ξ2

)
ε3/2 +O(ε4),

(7.10)
for small ε; recall that 0 6 ξ < 1. Since ξ2 < ξ1, (7.10) implies that the reversed
version of (7.8) must hold in the present case:

w0 6
ξ

1− ξ2 , 0 6 ξ < 1 (phase change with fan, no shock wave). (7.11)

By (6.11), a surprising consequence of this inequality is that the strain
+
γ immediately

behind the fan is tensile. Moreover, if one calculates the temperature
+
θ to the next

order in ε, one again obtains (7.9), which, together with (7.11), implies that the
temperature is now decreased slightly by the passage of the fan. These two results
are qualitatively opposite to their counterparts in the phase-change solution with a
shock wave but no fan.
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Figure 14. Schematic plot of velocity time-history of a particle in the case α 6= 0: (a) without
phase change; (b) with phase change.

For phase-change solutions of both types, one must enforce restrictions arising
from strain-range requirements and the entropy inequality at the phase boundary.
In the special case

◦
λT = 0

and to leading order in ε, these requirements restrict the totality of solutions to the
same admissible region R shown in figure 5 for the case α = 0, λT = 0. If one draws
in this region the curve Γ defined by w0 = ξ/(1 − ξ2), one finds that this curve
lies above the curve f = 0 forming the lower boundary of R and divides R into
two parts. By (7.8), points in R above Γ correspond to phase-change solutions with
a shock wave and no fan, while by (7.11), points in R below Γ yield phase-change
solutions with a fan but no shock wave. Which of these alternatives actually occurs
depends on where, within the shaded region of figure 5 and relative to the curve Γ,
the curve K (figure 6) generated by the kinetic relation lies. Since the phase change
accompanied by a fan leads to the counter-intuitive results of tensile strain and a
drop in temperature behind the fan, one might expect the corresponding solution
not to occur, though there is no fundamental reason why this should be so.

Finally, for either type of phase-change solution, one must calculate the driving
traction at the phase boundary and impose the kinetic relation to determine the
phase boundary velocity ṡ in terms of the impact velocity v0 and the initial tem-
perature θ0. We omit this calculation, since the numerical procedure involved is
straightforward.

Figures 14a, b are schematic plots of particle velocity v(x, t) at fixed x as a function
of time for the respective cases in which a phase change is absent (figure 14a) or
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present (figures 14b). The impact velocity is assumed to be positive in each case,
corresponding to compression. The solution without a phase change therefore does
not involve a fan; there may or may not be a fan when the phase transition occurs.
Figure 14 is the counterpart for ε small and positive of figure 8, which applies when
ε = 0.
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